
13150 Highway 9, Suite 123, Boulder Creek, CA 95006 Telephone: 831/338-4621 FAX: 831/338-3113

Page
www.AlternativeTech.com mcgoveran@AlternativeTech.com

Copyright  Alternative Technologies, All Rights Reserved

1

Enterprise Integrity: Ready to Commit?
Vol. 2, No. 2

Forever in pursuit of the silver bullet, we often complicate the very problems we seek to

solve. Common culprits are e-business (especially B2B) and integration policies with a singular

goal of higher efficiency, usually understood as "faster". There are (at least) two traps in this

thinking. First, as well-known since the old time and motion studies, faster processing is not

necessarily better and often increases errors. People, and businesses, need unscheduled time to

respond to and repair errors, to adapt to change, and to innovate. Second, cumulative local

schedule optimization often leads to a bad overall schedule. Conclusion? The blind pursuit of

"zero latency" is simply a mistake leading to inefficiencies and rigid business processes.

Please don't misunderstand: agendas like Straight Through Processing are important and

increasingly necessary. Moreover, reducing latencies in business processes by an order of

magnitude is a great goal. Unfortunately, we often confuse effective methods with solutions.

Case in point: asynchronous messaging and the loosely coupled systems are flexible, aiding IT

agility and therefore business agility (inasmuch as that business depends on IT). However, few

have thought through the implications of a zero latency asynchronous infrastructure.

Let's consider the implications for maintaining correctness of data and applications via

transaction management. Traditional application design relies on the assumption that the

individual transaction steps are in lock step, have no latency, and the success or failure of each

step is communicated synchronously. Synchronous communication gives the transaction

manager (or application code) a chance to prevent partial completion of the transaction. Early in

my career, we had to write each application so as to insure transaction atomicity, consistency,

isolation, and durability. Most programmers delivered less than perfect solutions, unaware that

correctness assumptions for one transaction mix often fail as new transactions are included.

 Years of research gave us (provably correct) automatic methods to maintain

transactional correctness without the need for application, process, or message specific coding.

The results were encapsulated as TP (transaction processing) monitors, often associated with

DBMSs. Although better distributed applications are written to take advantage of a TP monitor

or DBMS managed transactions, most applications still attempt to maintain transactional

integrity through code. Older mainframe applications may have very complex transaction

structures in which transaction boundaries (synchronization points or synchpoints) are managed

by a combination of code, control language, and TP monitor. Packaged application software is

often just as complex. Whether legacy or packaged application, the relationship between

application interfaces and transaction requirements is seldom documented. When an API

exposes data or events, API boundaries are not necessarily coordinated with transaction

boundaries. Therein lies a host of problems for all enterprise integration efforts.

13150 Highway 9, Suite 123, Boulder Creek, CA 95006 Telephone: 831/338-4621 FAX: 831/338-3113

Page
www.AlternativeTech.com mcgoveran@AlternativeTech.com

Copyright  Alternative Technologies, All Rights Reserved

2

With asynchronous messaging, maintaining known and coordinated synchronization

points becomes extremely difficult. By definition, it permits latencies. This is problematic for

the correctness (integrity) that transactions are intended to enforce, and we are forced to mix

models of transaction isolation. "Synchronous" mode is commonly used within applications,

typically using a pessimistic approach (locking) to prevent errors, isolating resource access and

modification by distinct transactions. The result is a more rigid, closely coupled sequence of

events. By contrast, while asynchronous messaging frees us to optimize error handling and

change dynamically (and permits latencies in which to do this), it also forces an optimistic (no

locks) approach to isolation. If something goes wrong, we assume we can detect and correct the

problem without residual negative side effects. Usually completed steps are simply rolled back

on detection of an integrity problem.

Optimistic approaches work reasonably well as long as the transaction mix is inherently

isolated. Otherwise, residual effects will ultimately corrupt the application. When multiple

asynchronous steps affecting distributed resources are involved in each transaction (welcome to

typical eAI scenarios), the familiar rollback mechanism is not available and compensating

transactions are needed. A compensating transaction is simply a transaction that "undoes" or

compensates for changes already made. If both the transaction mix and the individual

transaction steps are inherently isolated, a set of compensating transactions will let us repair

errors in an asynchronous world.

We must be able to design correct compensating transactions… no easy task, but a

solvable problem! (I'll provide some compensating transaction design guidelines in a future

column.) Asynchronous messaging is a good thing and current approaches to integration have

tremendous benefits. Nevertheless, given the code in legacy applications (and even in new

many ones), we also need to reduce costs and the attendant business risks by insisting on good

transactional design. Adopting asynchronous messaging with a focus on removing latencies

can result in unanticipated errors and business rigidity. Gluing your enterprise into a tight

monolith will hamper its agility… and your integrated enterprise has little value if you give up

its integrity.

